5-Helpful-Tools-for-Virtual-Reality-Game-Developers.jpg

Virtual Reality

Virtual Reality is an interactive computer-generated experience and use of computer technology to create a simulated environment. VR helps the user to experience from inside, Instead of viewing a screen in front of them, users are immersed and able to interact with 3D worlds using VR head mounted displays. In VR Technology, most commonly uses virtual reality headsets (HMD’s) or multi-projected environments, sometimes in combination with physical environments, to generate realistic images, sounds and other sensations that simulate a user’s physical presence in a virtual or imaginary environment.

VR can be used in various fields such as academic research through to engineering, design, business, the arts and entertainment. Also virtual reality produces a set of data which is then used to develop new models, training methods, communication and interaction.

Virtual Reality can be applied in various fields :

VR can be used in medical studies to enable students to know the human body structure.
VR can be used in scientific research laboratories so that scientist can easily research on a specific topic.
VR can be used in entertaiment like in games and movies to make the gaming experience more real and to allow individual to experience adventures under extreme conditions.
AVRDude (Software that programs the microcontroller on Arduino), and VR can be used in driving schools as it give a real look of roads and traffic.
VR can be used in military training for the soldiers to get familiar with different areas in the battlefield.

Advantages of Virtual Reality:

Virtual reality creates a realistic like world in virtually
It enables user to explore places in virtually.
Through Virtual Reality user can experiment with an artificial environment.
Virtual Reality make the education more easily and comfort.

Disadvantages of Virtual Reality:

  • The equipment used in virtual reality are very expensive (Example: HTC Vive)
  • It consists of complex technology.
  • In virtual reality environment we can’t move by our own like in the real world.

Applications of Virtual Reality:

Using VR exposure therapy, a person enters a re-enactment of a traumatic event. It has also been used to treat anxiety, phobias and depression. Virtual reality technology can provide a safe environment for patients to come into contact with things they fear, whilst remaining in a controlled and safe environment.

And we describing some more applications here below:

  • Training & Education
  • Entertainment & Gaming
  • Help & Healing
  • Architecture & Planning
  1. Training & Education
    A virtual reality simulator enables someone to learn basics without any accident himself or others and their property. VR also may reduce liability exposure for the driver-training school. Also helps to military trainings. Immersive experiences also enable medical students to test surgical skills without live patients. In some situations, VR provides the only safe environment in which to gain advanced or even basic skills. VR that models the real world poorly leads to faulty training results.
  2. Entertainment & Gaming
    VR helps to enter and participate users into imaginary worlds, turning watching a screen into living an experience. Some VR headsets carry a high price tag, especially for proprietary closed-face designs. Wearing them for long periods of time produces fatigue and an unsettling feeling of enclosure. In some cases, VR leads to make results that interfere with the ability to perceive and react to real experiences, or that encourage the choice of VR over real life.
  3. Help & Healing
    Simulating terrible events can help military service members work through some of the effects of terrible stress disorder that result from fight. VR also can assist in treating phobias, especially those that involve handling or being near specific animals, environments or objects. VR holds promise in physical rehabilitation, providing patients with opportunities to refine ambulatory or other skills in a clinic setting before moving on to the real-life equivalent.
  4. Architecture & Planning
    Virtual reality technology into architectural design & urban planning helps decision makers visualize the outcomes of proposed development and renewal of designs. Early versions of this up, but coming use of VR combined computer-aided design with geographic information systems to produce a virtual world in a Web browser. That websites can serve up fly-through reconstructions of real cities, the move to fully immersive experiences only requires the ability to incorporate the onscreen view into a VR headset. Meanwhile, augmented reality projects virtual information onto a real-world scene with incorporating new graphical objects /adding notations.
future-in-robotics_gallery.jpg

Future in robotics

Robotics is the study of robots. Robots are machines that can be used to do jobs. Some robots can do work by themselves. Other robots must always have a person telling them what to do. Robots can work under extreme environments where it’s dangerous or impossible for humans to go. Robotics requires a working knowledge of electronics, mechanics, and software and a person working in the field has become known as a roboticist. It deals with the design, construction, operation, and use of robots, as well as computer systems for their control, sensory feedback, and information processing. These technologies are used to develop machines that can substitute for humans and replicate human actions. In the future, robots with artificial intelligence will help make life easier for all of us – doing our dull, dirty, difficult jobs, and tackling tasks we simply couldn’t do ourselves.

Some future applications of Robots:

  • Space – Orbit manufacture of replacement parts
  • Tools for aircraft
  • Robots under ice focuses on the use of autonomous submarines to determine ice hazard risks for shipping
  • Energy installations in the arctic.
  • Drones for inspection of offshore wind farms with the use of autonomous surface vessels, creating a system which will automatically deploy and recover the inspection drones.

Future Food

AI equipped machines will also play a big part in the future of agriculture, reducing food production costs and improving land use. In future, robots or drones will precisely remove weeds or target them with pesticide, helping reduce chemical use by up to 90%, while tiny sensors could monitor crop growth and alert farmers to problems, or let them know the best time to harvest. Getting food to consumers will be greener, cheaper and easier, with the help of driverless vehicles. Autonomous delivery systems to the home will make on-demand deliveries much more economically viable. And because people will only order what they need, when they need it, food waste and the excess packaging associated with bulk buying in supermarkets will be drastically reduced.

Smarter Energy

In the future, our energy will be generated as low-cost, renewable resources, built and maintained in remote locations by robotic systems. Autonomous scouts will work in teams, exploring the earth to harvest energy, finding sources of renewable energy and natural resources, as well as monitoring bio-diversity and climate. Robots are already being used to monitor the safety of oil and gas pipelines: smart robots carry out internal, in-service pipeline inspection. The use of aerial drones to monitor large and difficult to reach areas, helping overcome issues of restricted access. Robots could even clean up waste such as plastics from our oceans, and other pollutants.

Working Together

Robotics and AI helps to change many things for the better. But with robots replace so many of the tasks that were traditionally done by humans, it’s gradually decrease our jobs. It’s probably more helpful to think. While some jobs may gradually disappear, there will be opportunities for new career choices that we probably can’t even imagine now. When humans and AI powered systems work together, they are most effective – the group of people and machines, using human imagination, creativity and personality, but combined with the precision and accuracy, strength, reliability and automation of robotic systems, etc. will see humans get legal power to take on the tasks we do best. Technologies that simplify the control of robots from anywhere, will allow many more physical jobs to be carried out remotely, so that people can work much more flexible and comfortable conditions. The increased productivity of a workforce where human and machine skills are combined will help grow economies, and opportunities, worldwide.

9 Ways – Robotics Could Transform Our Future World:

Here we are discussing about the future of robotics in various streams.

1. Robotics in public security

Artificial Intelligence technology for predicting and detecting crime. By using drone footage will make that happen soon. In addition to that, identification of automatic recognition of suspicious activities based on camera -based security systems. This technology will help the society in a smart way. It allows law enforcement officials to act actions quickly when suspicious behavior has been spotted.

2. Robots in education

A single teacher can’t have the capacity to fulfill the needs for every single student in the classroom. Computer-based learning is already changing things from these ways. It’s not replacing the teacher, but it helps and supports students to learn their own. Personalized learning processes will increase the robots. NAO, the humanoid robot, is already forming bonds with students from around the world. It comes with important senses of natural interaction, including moving, listening, speaking, and connecting.

3. Robots at home

Internet connected home robots are already part of our lives. Multi-function robotic cookers are able to fry, steam, bake, slow cook, and perform any other action without our intervention. We just need to set them up. We expect to see speech comprehension and increased interactions with humans in the upcoming years. These developments may end up changing the entire look and feel of our homes!

4. Robots as colleagues

Robots will become capable of taking on multiple roles in an organization, so it’s time for us to think about how we interact with our new colleagues.

5. Robots might take our jobs

Whether we like it or not, robots have changed many people in their jobs. The jobs in office administration, logistics, and transport are also at risk of being replaced. In future, many occupations are at risk of being automated, including insurance underwriters, telemarketers, and tax-return preparers etc.

6. They create jobs

Technology is changing fast and it does have economic advices. Driverless cars, for instance, are highly likely to replace cab drivers in the future. In the near future AI will most likely replace tasks, not jobs. The good news is that It will create new markets and jobs. We might need additional education and re-training for those jobs, but the opportunities will be there.

7. Autonomous cars

Driverless cars still require some human intervention these days, but we’re getting closer to the day when they won’t. Google Car, Uber Taxi etc are examples of these type driverless cars as we seen.

8. Healthcare robots

Instead of visiting a clinic or physician, who will give us check-up with simple stethoscope, we’ll have intelligent robots to do the same task with more precision. They will interact with patients, check on their conditions, and evaluate the need for further appointments.

9. Robotics for entertainment

Robots are getting more personalized, interactive and engaging. With the growth of this industry, virtual reality will enter our homes in the near future. Conversations help us communicate with our home enthusiasts, who will respond to our efforts to communicate.